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I NTRODUCTI ON

sion, and consumption).

According to Dietrich (1963), the three main tasks of

(1) observing exactly the processes and

(synthesis). This thesis is concerned with the second task,

The local time rate of change of solute concentration

phenomena in the ocean, (2) employing analytical methods to

bution) in terms of its primary causes (advection, diffu-

to understand an observable phenomena (the oxygen di stri-

understand the observable phenomena in terms of their pri-

in that an analytical method (a numerical model) is employed

oceanography are:

is a balance of advection, diffusion, and consumption, which

mary causes, and (3) deducing effects from known causes

The Complete Analytical Model

can be written in Cartesian coordinates as (Sverdrup et al.,

1942):

~+ ~+ as + dS
at u ax v ay w az
= a Kx

as +.L Ky
d S + a Kz

as + R. ( 1 )ax ax ay ay az az

Here S is solute concentration; x and yare the two horizon-

tal directions (e.g., East and North); z is the vertical

direction (taken as positive downward); t is time; u, v, and

ware the respective x, y, and z velocity components; the

K's are coefficients of kinematic eddy diffusivity; and R

1
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represents sol ute consumption (i .e., R < 0).

A general analytical solution of the above time-depend-

ent, three-dimensional formulation of the advection-diffu-

sion-production equation is not possibl e. The difficulty

1 i es in the parameteri zation: A whol e family of curves can

be generated, dependent upon the choi ce of parameters. It

is impractical to derive all solutions for all values of

velocity, diffusivity, and consumption. One way of dealing

cally real istic hydraul ic model, and infer advection and

mohaline circulation (e.g., see review by Welander, 1975),

ocean tracer distributions (Craig, 1969; Roether et al.,

1970; Rooth and Ostland, 1972), estuarine water quality

(0' Connor, 1962; Harl eman, 1977), water parcel mi xi ng

with this difficulty is to make simplifying assumptions,

then solve the model analytically for that simple case.

Exampl es of thi s approach can be found in model s of ther-

1975), and the oceanic oxygen minimum

Another approach is to construct a physi-(Wyrtki, 1962).

(Ebbesmeyer et al.

I
io
I
I

I
diffusion from dye studies (e.g. see rev i ew by Harl eman,

1971). A further approach, that is becoming increasingly

popular with the decreasing cost of large-scale computers is

numeri cal model i ng.

Numerical versus Analytical Model s

A numerical model has advantages and disadvantages com-

pared to an analytical model. It has the advantage that the

1 arge amount of data produced can be iteratively "fine-
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tune'd" to values from a particular location, thereby

ensuring the model's val idity. Then, by changing parameters

and boundary conditions, the numerical model can be used to

model conditions at a different location, or different

other hand, are more restrictive in that their results are

appl icabl e only to that speci al case for which they are

developed.

One disadvantage of the numerical model is that it

generates a lot of data, which tends to obscure the physics

of the situation. The numerical modeler can become immersed

in the job of curve-fitting, and lose sight of the physical

real ity of the situation. The analytical model has the

advantage that, due to its simplification, the answers it

produces have relatively simple physical interpretations.

However, the numerical model can incl ude more terms than can

the analytical model; a sensitivity analysis will determine

whi ch of those terms are the most important. Resul ts from

the numerical model may thus be used to construct more

complete analytical solutions, thereby leading indirectly to

a more thorough understanding of a complex system.

Analytical models, on thesolutes at the same location.

The Biogeochemical Importance of the Oxygen Distribution

One observabl e phenomena which can be further el uci­

dated with the hel p of a numerical model is the oxygen

distribution. If the model is first applied for the case of

a conservative sol ute (e.g., sal inity), the distribution of



4

the 'velocity and diffusivity components may be determined.

Subsequent appl ication of the model to the oxygen distribu­

tion allows the determination of the rate of the biogeoche­

mical processes, because as Wal sh (1975) states, " ... all

the biology [is] stuffed into the R term." In other words,

once the physics have been clarified, aspects of the distri­

bution not directly attributabl e to physical causes are due

to the biogeochemistry.

Photosynthesis by phytoplankton combines carbon

dioxide, water, and nutrients to produce protoplasm and

water. Organic matter is aerobically decomposed in the

reverse reaction to regenerate nutrients and carbon dioxide

(i.e., respiration). The primary source for the evol ution

of atmospheric oxygen is as a photosynthetic by-product of

phytoplankton. In the reverse direction, the princip"al

mechanism by which seawater nutrients are regenerated from

organic matter is respiration.

An oxygen minimum zone occurs in areas where respira­

tion exceeds the supply of oxygen by advection and diffusion

(Wyrtki, 1962). An extensive oxygen minimum zone «I ml/l)

exists in the eastern tropical Pacific, where oxygen con­

centrations have been reported below the limits of detection

by special colorimetric techniques «0.01 ml/l) (Broenkow

and Cline, 1969; Cline and Richards, 1972).

Wyrtki (1967) discusses the factors responsible for the

extensive oxygen minimum zone observed in the eastern tropi-
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cal" Pacific Ocean. He concludes, "It would be extremely

interesting to set up a mathematical model and to cal cul ate

numer i cal val ues for the par amet e r sin vol ved . " Ac cor din g1y ,

this thesis uses a numerical model to determine val ues of

advection, diffusion, and consumption which are compatible

with the oxygen distribution in the eastern tropical

Pacific. Because the velocities and diffusivities are

assumed, this is a kinematic model. No effort is made to

determine the sources of energy responsibl e for the assumed

dynamics, which is a criticism discussed by Munk (1966).

Model Appl ication

The extensive oxygen minimum zone observed in the

eastern tropical Pacific is the feature for which distribu­

tions of advection, diffusion, and consumption will be esti­

mated using the numerical model. The oxygen minimum zone

spans two water masses in its vertical distribution: The

Subtropical Subsurface Water above and the Intermediate

Water below. The almost 1 inear temperature-sal inity rel a-

tionship in this depth range indicates that the oxygen mini­

mum 1ayer is compri sed of mi xed water from these two water

masses (Wyrtki, 1967).

The ori gi n of the water mass mi xed into the oxygen

minimum layer from above is explained by Wyrtki (1967). The

Subtropical Subsurface Water is formed south of laoS, from

which it is drawn northward into the Equatorial Under­

current. The water is mixed as it is carried eastward in



the meridional flow of the Undercurrent.
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The Undercurrent

discharges its water at the Galapagos Islands, from which

some of the water flows north, and some south. The

northward-turning branch of the discharge of the Equatorial

Undercurrent flows in a cyclonic path from the Galapagos

Islands. West of about ISDN, 120 0 W the water in the oxygen

mi nimum 1 ayer mi xes with waters from both the Cal iforni a

Current and the Countercurrent, which together form the

North Equatori al Current. The oxygen minimum layer thus

increases in oxygen concentration and decreases in vertical

extent west of thi s poi nt. The assumed path of the flow

(Fig. 1) approximates that given by Wyrtki (1967). The flow

path also agrees qualitatively with maps of acceleration

potential given for this water mass (Love, 1972; Reid,

1965). Present knowledge of the large scale circulation

beneath the wind-driven surface layer in the eastern tropi-

cal Pacific is limited to such studies as the aforemen-

tioned, all of which infer flow indirectly from salinity and

temperature di stri buti ons.

The salinity maximum at the bottom of the thermocline

is formed by the discharge of water from the Undercurrent at

the Galapagos Islands (southern boundary, Figs. 2b, 3b).

The salinity in the core of the salinity maximum is about

35. The temperature is about 14°C. The salinity maximum is

located at a depth of 100 m. At the northwest end of the

flow the salinity and temperature in the core of the sali-
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nity maximum layer have decreased to 34.7 and 12°C, respec­

tively, and the depth of the 1ayer has increased to 200 m

(northern boundary, Figs. 2b, 3b).

The water mass that is mixed into the oxygen minimum

layer from below is the Intermediate Water. According to

Wyrtki (1967), the sal inity minimum associated with this

water mass north of 15°5, " is not identical or

directly derived from the minimum south of 15°5 [the

Antarctic Intermediate Water]." Wyrtki states that, because

this northern component of the Intermediate Water has lower

temperatures and higher densities than does the Intermediate

Water south of 15°5, it is an indication that," . the

downward diffusion of heat and salt have caused the minimum

to appear deeper." Wyrtki al so suggests that the long time

scale associated with vertical diffusion is consistent with

a long residence time of this water mass, which agrees with

its low oxygen concentration.

The oxygen concentration associated with the water

masses above and below the oxygen minimum drops as the flow

moves northward (Fig. 4b). The oxygen concentration in both

the Subtropical Subsurface and Intermediate Waters decreases

from about 1.5 mlll at the Galapagos Islands to 0.35 mil at

the northwestern boundary of the flow.

Two goals motivate the following numerical model of the

oxygen distribution in the eastern tropical Pacific Ocean.

The fi rst goal is to fi nd the controll i ng factors of the
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differential equation (Eq. 2); i.e., the "primary balance."

The second goal is to formul ate and quantify consumption

the goal is not to explain the processes responsible for

creating the oxygen minimum zone: The purpose is to eluci-

It must be emphasized thatwithin the oxygen minimum zone.

I
I
I

I
t,

date those local processes which intensify it.



METHODS

the actual form of the differential equation modeled.

Eq. 1 to a more numerically manageable form are lateral

assumptions used to simplifyadditionalThe two

Additional Assumptions

additional simplifying assumptions before presentation of

The development of the numerical model requires some

homogeneity and horizontal isotropy.

The Model

primary axis of flow, whereupon the y-components of both the

lateral velocity (v) and the solute gradient (3S/3y) are

considered negligible.

( 2 )

The x-axis is positioned along the

dK~+..LI(~ R
dX hax 3z ZdZ+'

The horizontal coefficient of kinema-

With the above additional assumptions Eq. 1 becomes:

Lateral homogeneity.

Horizontal isotropy.

tic eddy diffusivity (K x ) is assumed horizontally isotropic,

and thus denoted Kh'

I,

i,
I

I
where 0 is the oxygen concentrati on. The "forci ng

functions" of the model are the velocities (u and w),

diffusivities (Kh and Kz ), and consumption (R), all of which

13
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can be functions of x and z. Additionally, R can be a func­

tion of concentration.

Initial and Boundary Conditions

Equation 2 requires one initial and four boundary con­

ditions. The initial condition specifies the horizontal and

vertical distribution of the solute at the initial time

t = O. Observed distributions of solute at the top, bottom,

southern (left-hand), and northern (right-hand) boundaries

must al so be gi ven: these boundary conditi ons are assumed

constant with time. Thus, efficient implementation of all

conditions at once requires specification of an initial con­

dition which includes the constant boundary conditions which

will be maintained with time.

Numerical Solution by Finite Differences

Equation 2 is a parabolic-type of partial differential

equation. The numerical approximation of this type of

equation has received extensive treatment in the literature.

Many different ways have been used to formulate the finite

difference equations which numerically approximate such

parabolic-type equations. One technique that has won

favorable attention for two-dimensional models is the alter­

nating direction implicit (ADI) method, first developed in

companion papers by Peaceman and Rachford (1955) and Douglas

(1955). A large scale computational model using the ADI

method is given by Leenderste (1970), upon which the present
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procedure is based.

The difference equations for the ADI method of approxi­

mating Eq. 2 are:

~ (O~+~/2 _ O~ .) + ui ,j (O~+I/~ _ O~+II/~)
r,t 1,J 1,J 2r,x 1+1,J 1- ,J

+ W2i,j (O~ . 1 - O~ . 1)
r,z 1,J+ 1,J-

= 1_ [K (O~+I/~ _ O~+~/2)
(r,x)2 hi+l/2,j 1+1,J 1,J

- K (O~+~/2 _ O~+I/~)J
hi-l/2,j 1,J 1-1,J

+ 1 [K (O~.
(r,z)2 zi ,j+l/2 1,J+

and

k- K ( O. .
Zi ,j -1/2 1,J

k
O.• I)J + R.•1,J- 1,J, ( 3)

~ (O~+~ _ O~+~/2) +..t:i,j (O~+I/~ _ O~+I/~)
r,t 1,J 1,J 2r,x 1+1,J 1-1,J

+ Wi,j (Ok+l Ok+l
2r,z i,j+l - i,j-l

= 1_ [K (O~+I/~ _ O~+~/2)
(r,x)2 hi+l/2,j 1+1,J 1,J

K (O~+~/2 - O~+II/~)J
hi-l/2,j 1,J 1- ,J

+ 1 [K (O~+~
(r,z)2 zi ,j+l/2 1,J+l

kO. .)
1 ,J

- K (O~+~ - O~+~ )J + R..
Zi,j-l/2 1,J 1,J-l 1,J.

Here the conventional notation

kO.. = O(ir,x, jr,z, kr,t)
1 , J

( 4 )

I,
BJ.. _
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is used to described discrete values of the variables on a

centration is advanced in time, the diffusivity terms are

The space-staggered scheme has

A space-staggered scheme is used (Pl atzman, 1959) in

the advantage that, for each point at which the oxygen con-

grid.

at different grid points.

which diffusivities and oxygen concentrations are described

centered in space. Oxygen concentrations, velocities, and

productivities are all located at the same integer space

indices (i,j). Diffusivities, however, are situated midway

between the concentration grid points in space, and are thus

described at integer and one-half indices (i+1/2, j+1/2).

The ADI method has two main advantages. The method is

unconditionally stable and computationally more efficient

than most other stable schemes (e.g., seven times more effi-

ci ent than the Crank-Nichol son method). The basic idea

behind the ADI method is to combine the computational ease

of expl icit schemes (in which values at new times are calcu­

1 ated from val ues at previous times) with the stabil ity of

impl icit schemes (in which val ues at new times depend on the

spatial gradient of values at the new time). Each time step

(bt) is accordingly divided up into Eqs. 3 and 4. Equation

3 is impl icit in the hori zontal and expl icit in the vertical

direction, and vice-versa for Eq. 4. When the two suc-

cessive operations are considered over one time interval:

I,
I.a.. _



- K (0~+~/2 _ O~+I/~)J
hi-I/2,j 1,J l-I,J

't
I (O~+~

L> 1 ,J

1

- O~ .) +~ (O~+I/~ _ O~+I/~)
1,J 2t,x l+I,J l-I,J

[K (O~+I/~ _ 0~+~/2)
hi+I/2,j 1+I,J 1,J

17

- K (O~ . - O~ . 1) + 2
Wi

,j (O~+~ 1 - O~+~ 1)
Zi,j-I/2 1,J 1,J- t,Z 1,J+ 1,J-·

l{~ k k+ (Oi ,j+I O. . 1)2 2t, Z 1 ,J -

1
[K Zi ,j+I/2

k k
M2 (Oi ,j+I O. .)

1 ,J

Ol:+~ I)J} = R..1,J- 1,J,

,
i

I
I + _=-1" [K (O~+~

(t,z)2 zi ,j+I/2 1,J+I

K ( O~ + ~
Zi,j-I/2 1,J

O~+~)
1 ,J

( 5 )

the terms containing spatial derivatives are either centered

in time (for the horizontal direction), or averaged in time

over the time interval (for the vertical direction). The

time-centering or time-averaging of the spatial derivatives

is precisely what gives the ADI method its attractive

numerical properties.

Numerical properties. Three numerical properties must be

obeyed for the finite difference system (Eqs. 3, 4) to

accurately approximate the differential equation (Eq. 2).

These properties are (1) consistency, (2) stability, and (3)

convergence.

Consistency. A finite difference system is consistent
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with' a differential equation if, in the limit as the grid

spacings tend toward zero, the finite difference system

becomes the same as the differential equation at each point

in the solution domain (Noye, 1982). By Taylor's series

expansions about the point (i, j, k+l/2), Appendix A shows

that the finite difference system (Eqs. 3,4) is consistent

with the differential equation (Eq. 2), and approximates it

to second-order accuracy in space, and time.

Stability. The fi nite difference system is stabl e if

numerical errors introduced by the computation do not

ampl ify in an unl imited manner. The unconditional stabil ity

of the ADI method for homogeneous equations (i .e., R = 0 in

Eq. 2) was one of the reasons for which it was developed

(Peaceman and Rachford, 1955). The investigation of the

I
f

I
!
i

stabil ity of the non-homogeneous Eq. 2 is more compl icated.

Marchuk (1982) presents a finite difference system called

the "stability method," which he shows is unconditionally

stabl e for both the homogeneous and non-homogeneous cases.

The equivalence of the finite difference system and

Marchuk's stability method is shown in Eqs. 6 through 10.

To show that Eqs. 3 and 4 are the same as Marchuk' s

stability method, they are first writen as:
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where the spati al indices of the oxygen- concentrations have

been suppressed for notational simpl icity.

L1 and L2 have the following definitions:

The operators

and

u' .
L1a = 2l~J (a i +1 ,j

1 IfK
(t.x) 2 - hi+1/2,j

- Kh ( a. .
i-1/2,j 1,J

- a. 1 .)
1 - , J

(a. 1 . - a. .)
1+ ,J 1,J

-0'1·)1,1- ,J '.:I

U L\iC'i
6

( 8)

L

1 [K
(t.z)2 zi ,j+1/2

- K (0 ..
Zi,j-1/2 1 ,J

(0"1- 0 .. )1,J+ 1,J

- a. . l)J.
1 ,J -

( 9 )

El iminating unknowns (the a k+1/ 2 ) from Eqs. 6 and 7 gives:

+ t.t L ) (I + g L ) ak+L Ok
(I 2 1 2 2 t.t ( 10)

where L is the matrix sum L = L1 + L2' and I is the identity

matrix. Equation 10 is the stabil ity method of Marchuk

(1982). Appendix B establishes conditions which ensure that

Marchuk's assumptions are true, thus demonstrating that the

finite difference system (Eqs. 3, 4) is unconditionally

stabl e.

Convergence. A solution to a finite difference system

1.

is convergent to that of the differential equation if, in

the 1 imit as the grid spacings tend toward zero, the finite

difference solution approaches the solution of the differen-
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tial 'equation at each point in the solution domain (Noye,

1982). In general, it is very difficult to show con-

vergence; however, connections exist between consistency,

stabi 1ity, and convergence. One such connecti on is Lax's

Equivalence Theorem (Lax and Richtmyer, 1956): "Gi ven a

properly posed linear initial value problem and a finite

difference approximation to it that satisfies the con-

sistency condition, stability is the necessary and suf-

ficient condition for convergence." The condition that the

initial value problem be properly posed implies that the

solution of Eq. 2 must depend continuously on the initial

condition (i.e., discontinuities are not allowed in the ini-

tial condition). The condition that the problem must be

linear ensures that errors propagate according to the homo-

geneous form of the differenti al equation (i .e., propagation

of errors is not affected by the non-homogeneous term).

8ecause the system of linear finite differences (Eqs. 3, 4)

is consistent with Eq. 2 (Appendix A) and stable (Marchuk,

1982), it follows from Lax's Equivalence Theorem that it is

also convergent for properly posed initial value problems.

Method of solution. The model solves Eqs. 3 and 4 by an

The procedure is outlined below for Eq. 3.

efficient method first developed by Thomas (1949), which is

often called "The Thomas Algorithm," (e.g., Noye, 1982).

"

(
i,

l IIIIIIIIIIIIIIIIIIIIIIIIIIIIII_IIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-
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'Omitting vertical direction indices and rearranging

Eq. 3 gives:

_A.O k.+ 1/ 2 + B.O k.+ 1/ 2 _ C Ok+l/2 = Ok
11+1 11 ii-l i'

where the coefficients on the left-hand side are:

Ai L 1 K ui ,j )= (t;X -AX hi+l/2,j 2 '

L 1 u· .
Ci = (t;X K +~)AX hi -1/2,j 2 '

and

The right-hand side represents known quantities:

( 11 )

( 12 )

( 13 )

( 14 )

k k 4 k kO. = F. . O. . 1 - (G. . - -) O. . + H. . O. . 11 1,J 1,J+ 1,J At 1,J 1,J 1,J-
+ R.. , (15)

1 , J

where

1 1 w· .
F. . = (r;z KZi ,j+l/2

..:2..d)1 ,J AZ 2 '

H. . 1 1 K wi ,j )= (r;z +1 , J AZ zi ,j -1/2 2 '

and
2G.. = F.. + H.. +'-t.1,J 1,J 1,J u

Equation 11 can be written in matrix form as:

( 16)

( 17)

( 18)



1 0 0 0
-Cl Bl -AI 0
o -C2 B2 -A2

o o o
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0 00 k+l/2 00 k
0 01 Dl
0 02 D2

x =

- CL-l BL-I- AL-l °L-l DL-

0 0 1 °L °L

( 19 )

where L represents the number of intervals in the horizontal

direction (~x's). Equation 19 illustrates that Eq. 11 is an

L x L system of equations which must be solved at each half­

time interval (t + At/2). The use of the Thomas Al gorithm

for the sol ution of Eq. 11 is developed below in a recursive

manner.

The Thomas Al gorithm. Consider the difference equation

indicated at = 0 in Eq. 19 :

Ok+l/2 k ( 20)= 00'0

Equation 20 represents the 1eft-s i de boundary condition

(note that it is steady-state). Hith the definition of

recursion parameters MO = 0 and NO = O~ Eq. 20 becomes:

Ok+l/2 = M Ok+l/2 + N (21)o 0 1 O·

( 22)A Ok+l/2 =
1 2

-C Ok+l/2 + B Ok+l/2
1 0 1 1

The difference equation at i = 1 in Eq. 19 is:I
f
I

I.J.. _
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Substitution of Eq. 21 into Eq. 22 and rearranging yields:

Ok+1/2 = M Ok+1/2 + N
1

,
112 ( 23)

where the recursion parameters are defined as:

and
(24)

D~ + C1NO.
B1 - C1 MO (25)

Similarly, the difference equation at i = 2 in Eq. 19

becomes:

Ok+1/2 = M Ok+1/2 + N
2 2 3 2' (26)

with recursion parameters

( 27)

and

D~ + C2Nl.
B2 - C2 M1 ( 28)

The recursion becomes obvious. The recursion parameters

Ai
M. =

1 Bi - Ci Mi_1 (29)

and

recursion parameters are then used in the recursion formula:

(30)

The cal cul atedL-l.... ,

k
Di + Ci Ni-1
Bi - Ci Mi-1

N. =
1

are calculated for i = 1, 2,

I
i

l...IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII _



above operations are executed for all interior vertical grid

points j = 1, 2, •.• , M-1, where M is the number of vertical

intervals (6Z'S). When the above operations have been made,

the sol ution of Eq. 3 at a particul ar hal f-time interval is

complete.

Certain statements about the use of the above algorithm

24

( 31 )

The 1eft-s i de val ues of the

At each half-time interval the

The left-side boundary conditions (Eq. 20)

0 ~+1/2 = M.O k.+ 1/ 2 + N
1 1 1+1 i,

for i = L-l, L-2,

are necessary.

must first be prescribed.

recursion parameters (MO and No) are then calculated as

defined for Eq. 21. After the interior recursion parameters

have been calculated (Eqs. 29,30), the right-side boundary

condition

Ok+1/2 =
L,j ( 32 )

defines Eq. 31 at i = L-1. When the sequence of operations

given by Eq. 31 is complete, the oxygen concentrations

calcul ated for the hal f-time interval are used to calcul ate

concentrations at the integer time-interval (t + 6t).

Oxygen concentrations at the integer time-interval are

calculated by the solution for Eq. 4 in a manner exactly

analagous to that shown for Eq. 3.

I..
Computer Implementation

The computer program which implements the sol ution of
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The computer program checks for the possibil ity of steady-

(33)

The program is a subprogram of

Thus, by choosing E arbitrarily

= E,

The program is written in HPL for the HP

As the error criterion tends to zero, the finite

The test for steady-state is executed at the end of

O~+~ - O~ .
1,J 1,J

l>t

the cilculation of new oxygen concentrations for the integer

al so tends toward zero.

time) .

where E is the "error criterion" (note that Appendix A

[Eq. A.IS] shows that Eq. 33 is of second-order accuracy in

small, Eq. 33 tends toward the definition of steady-state.

The value of E is arbitrarily set in the computer program as

difference representation of the time-rate change of oxygen

state usi ng the following fi nite di fference representat i on

of steady-state:

Eqs: 3 and 4 is given in Appendix C, along with program

Al gori thm, and stores the resul ti ng sol ution.

Because the boundary conditions and model parameters

input of model parameters, uses the model parameters to

for the possibility of a steady-state solution (ClO/.;>t = 0).

gOOD Seri es 200 computers.

are at steady-state, choice of a large maximum time allo~ls

solve Eqs. 3 and 4 (the ADI method) with the Thomas

the "PLOT" program developed joi ntly by Moss Landi ng Mari ne

Laboratories and Scripps Visibility Lab. The program allows

documentation.

I
I,
L .........
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time interval. The cal cul ations are stopped if the new con-

centrations pass the test

I0~ + ~ - 0 ~ ·1 < Ell t1,J 1,J-- ( 34 )

for all ir.terior grid points i = 1,2, • •. , L - 1; j = 1,
,

2, ... ,M-l.

Continuity. Seawater can be assumed an incompressible

(35)

fluid. Thus, volume must be conserved, and the equation of

continuity:

~~ + ~~ + ~; = 01 i

must be obeyed. In thi s study, the y-component of the

1ateral velocity has been assumed negl igib1 e.

integration of Eq. 35 yields

Horn zontal

( 36)
o

where Uo ~ u (x = 0) and u = u(x = illx). Proper use of the

computer program requires adherence to Eq. 36. Two wkys are

provided: (1) input all velocities in a manner precohceived

to satisfy Eq. 36, or (2) input the distribution of vlrtical

velocities at all horizontal grid points plus the diltribu­

tion of horizontal velocity at the left-side boundary (x =

0). If the second method is chosen, the program wi 11

approximate the vertical derivative of the vertical veloci-

ties by



dw~Wi,j+1 - Wi,j-1 = w! .az ~ 2t.z 1 , J ,

for interior grid points, or

and
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(37)

( 38 )

w· Ma-w ~ 1,
az

for the upper

- wi,M-1 _ w!
2L1z - 1,M,

and lower boundaries, respectively. The

(39)

ver -

tical derivatives are second-order accurate in space in the

interior, and first-order accurate at the upper and lower

boundaries. Trapezoidal integration of the computed ver-

tical velocity derivatives is then used to approximate the

integral in Eq. 36:

(OX aw d x "" tI x
) dZ 2

"r (W! 1 . w! .)Li=1 1 -,J+1,J, ( 40)

where r is the hori zontal gri d poi nt at x. The final step

in computing the horizontal velocities adds the horizontal

velocity given at x = 0 to the computed integral:
,'I

6x w! . w!.
u r .~uO . +2 z: (1-1,J + 1,J).,J - , J (41)

Because of the coarse nature of the integration, the

computed hori zontal veloci ties wi 11 be a better approxima­

tion for horizontal grid points further away from the

left-side boundary. For the above-mentioned reason, hori-

zontal velocities used in the final calculations were analy-

.

&_--------------
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tic a:ll y computed from Eq. 36 , using preconceived notions of

the vertical velocity distribution and the horizontal velo-

city distribution at x = o. Horizontal velocities calcu-

1 ated using the trapezoidal integration method were used

only in trial runs of the model, when only rough solutions

were sought.

Time integration. When all of the space and time interval s

and ext e nt s h a-v e bee n s pee i fie dan d the dis t rib uti 0 n 0 f all

parameters sel ected, the time integration (i .e. the sol u­

tion of Eqs. 3 and 4) may proceed.

Program execution times can be long (up to 40 minutes)

when one or more of the following conditions is true: the

time interval is too small, the spatial interval is too

small, or one parameter is overwhelmingly 1 arger than all

others.

When the time integration has finished by either

reaching steady-state or the specified maximum time, the

model may either be re-run without los i ng the data, or the
.'

results saved. If the results are saved, the model can once

again be run, or scaled parameters and results printed on an

impact printer. The scaled parameters are:

x' = LlI X ,

z' = Mll z ,

u' = umax,
---xr-

(42)

(43)

(44)

,

......_--------
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W' = wmax,
zr-

Kh =
Kh max ,
(x I ) 2

K' = KZmax~
z ( z I ) 2

and
R' = Rmax •

( 45)

(46)

( 47)

(48)

Note that the scal ed parameters in Eqs. 44 through 48 all

have units of inverse time. Program run-times are con-

siderably shortened if the longest indicated time interval

is used for the trial run and results used as the initial

condition for the next run. Repeated appl ication of this

process allows systematic refinement of the time interval

and subsequent convergence of the model sol ution to the

solution of Eq. 2.

Selection of Boundary and Initial Conditions

Data for model boundary conditions were obtained from

the vertical sections of the eastern tropical Pacific given

by Love (1972)."'

Boundary positions. Visual inspection of the vertical sec-

tions of temperature and salinity near the Galapagos Islands

prompted the positioning of the southern (left-side) boun-

dary at 2.5°N, 92°W. At this point the subsurface discharge

of waters with the proper temperature-sal i ni ty charac-
l
I,

....._------------
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teristics of Equatorial Undercurrent Water was observed.

The position of the northern (right-side) boundary of the

model was chosen at 115°N, 119°W to correspond with the

northwestern boundary of the OXYgen minimum zone discussed

by Wyrtk i (1967). The assumed hori zontal extent of the

model was 3800 km (Fig. 1). The upper boundary of the model

was set at a depth of 150 m, corresponding to the average

depth of the core of the salinity maximum and the bottom of

the thermocline. The average depth of the 80 cl/ton surface

along the assumed path of flow was 800 m. Because 80 cl/ton

is the surface alon9 which the Intermediate Water flows

(Reid, 1965), 800 m was chosen as the model bottom boundary.

Grid intervals. Spatial intervals of 25 m in the vertical

and 100 km in the hori zontal were used. Cons i deri ng the

spatial variation of oxygen concentration as a wave, the

spatial discretization adopted impl ies that no waves can be

resolved which have wavelengths smaller than 50 m and/or 200

km in the vertical and horizontal directions, respectively.

Boundary conditions. Salinity, temperature, and oxygen

distributions for model boundary conditions were inter­

pol ated from Love (1972), then smoothed by visual inspection

(Fi gs. 2-4). Val ues were chosen to agree with .the data

summari zed by Wyrtk i (1967). The foll owi ng formul as were

used to scale the data:



0' = 0/1.5 (51)

Here S, T and 0 represent salinity, temperature (e), and

oXYgen (ml/l), respectively; primed quantities represent the

corresponding scaled values.

It must be emphasized that the oxygen boundary con­

ditions themselves impose an oxygen minimum zone. Thus, the

consumption necessary to fit the model to observed data

represent local processes which intensify the minimum.

and

S' = S - 34

T' = (T - 5)/9

31

( 49)

( 50 )

Initial conditions. Initial conditions at interior grid

points were generated by linear interpolation between top

and bottom boundary values.



RESULTS

Model resul ts will be presented below under two cate­

gories: (1) results from a choice of parameters which exhi­

bit the closest visual agreement with the observed data, or

"best fits," and (2) results from perturbing parameters from

their best fit values; i.e., sensitivity. Some conventions

will make the presentation of the results simpler. Model

boundaries will be referred to in this section as the TB

(top boundary, z = 150 m), BB (bottom boundary, z = 800 m),

LHB (southern or 1eft-hand boundary, x = 0 km), and RHB

(northern or ri ght-hand boundary, x = 3800 km). The word

"distance" will be used as horizontal distance from the LHB,

unl ess otherwise specified.

Best Fits

The vertical sections of observed data (Figs. 5-7)

were prepared from those given by Love (1972), using only

stations which fell along the assumed flow path (Fig. 1).

The "hest fit" model results exhibit the best visual

agreement with the observed data for simple choices of model

parameters (Fi gs. 8 - 10). Thus, the best fit model results

are for a choice of parameters which are mostly constants.

The values of the physical parameters which give the best

fit results are: w = -3 m/yr (-10- 5 em/sec), Kz = 3000

m2/yr (1 cm 2 /sec), and Kh = 6 x lOll m2 /yr (2 x 10 8
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