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INTRODUCTION

According to Dietrich (1963), the three main tasks of
oceanography are: (1) observing exactly the processes and
phenomena in the ocean, (2) employing analytical methads to
understand the observabile phenomena in terms of their pri-
mary causes, and (3) deducing effects from known causes
(synthesis). This thesis is concerned with the second task,
in that an analytical method (a numerical model) is employed
to understand an observable phenomena (the oxygen distri-
bution) in terms of its pf;mary causes (advection, diffu-

sion, and consumption).

The.Complete Analytical Model

The local time rate of change of solute concentration
is a balance of advection, diffusion, and consumption, which
can be written in Cartesian coordinates as (Sverdrup et al.,

1942):

as , , 2s 3s as

ot

3 3>
ax "x dx dy "y oy 3z "z 3z F R. (1)

Here S is solute cbncentration; x and y are the two horizon-
tal directions (e.g., East and North); z 1is the vertical
direction (taken as positive downward); t is time; u, v, and
w are the respective x, y, and z velocity components; the

K's are coefficients of kinematic eddy diffusivity; and R
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represents solute consumption (i.e., R'< 0).

A general analytical solution of the above time-depend-
ent, three-dimensional formulation of the advection-diffu-
sion-production equation is not possible. The difficulty
1ies in the parameterization: A whole family of curves can
be generated, dependent upon the choice of parameters. It
is impractical to derive all solutions for all values of
velocity, diffusivity, and consumption. One way of dealing
with this difficulty 1is to make simplifying assumptions,
then solve the model ana]&tica]]y for that simple case.
Examples of this approach can be found in models of ther-
mohaline circulation (e.g., see review by Welander, 1975),
ocean tracer distributions (Craig, 1969; Roether et al.,
1970; Rooth and Ostland, 1972), estuarine water quality
{0'Connor, 1962: Harleman, 1977), water parcel mixing
(Ebbesmeyer et al. 1975), and the oceanic oxygen minimum
(Wyrtki, 1962)}. Another approach 1is to construct a physi-
cally realtistic hydraulic model, and infer adyection and
diffusion from dye studies (e.g. see review by Harleman,
1971). A further approach, thaf is becoming increasingly
popular with the decreasing cost of large-scale computers is

numerical modeling.

NumericaT versus Analytical Models

A numerical model has advantages and disadvantages com-
pared to an analytical model. It has the advantage that the

large amount of data produced can be iteratively "fine-




tuned" to values from a particular Tlocation, thereby
ensuring the model's validity. Then, by changing parameters
and boundary conditions, the numerical model can be used to
model conditions at a different Tocation, or different
solutes at the same Tlocation. Analytical models, on the
other hand, are more restrictive in that their results are
applicable only to that special case for which they are
developed.

One disadvantage of the numerical model dis that it
generates a lot of data, whfch tends to obscure the physics
of the situation. The numerical modeler can become immersed
in the job of curve-fitting, and lose sight of the physical
reality of the situation. The analytical model has the
advantage that, due to its simb?ification, the answers it
produces have relatively simple physical 1interpretations.
However, the numerical model can include more terms than can
the analytical model; a sensitivity analysis will determine
which of those terms are the most important. Results from
the numerical model 'may thus be used to construct more
complete analytical solutions, thereby leading indirectly to

a more thorough understanding of a complex system.

The Biogeochemical Importance of the Oxygen Distribution

One observable phenomena which can be further eluci-
dated with the help of a numerical model 1is the oxygen
distribution.  If the model is first applied for the case of

a conservative solute (e.g., salinity), the distribution of




the *velocity and diffusivity components may be determined.
Subsequent application of the model to the oxygen distribu-
tion allows the determination of the rate of the biogeoche-
mical processes, because as Walsh (1975) states, ". . . all
the biology [is] stuffed into the R term." In other words,
once the physics have been clarified, aspects of the distri-
bution not directly attributable to physical causes are due
to the biogeochemistry.

Photosynthesis by phytoplankton combines carbon
dioxide, water, and nutrients to produce protoplasm and
water. Organic matter is aerobically decomposed in the
reverse reaction to regenerate nutrients and carbon dioxide
(i.e., respiration). The primary source for the evolution
of atmospheric oxygen is as a photosynthetic by-product of
phytoplankton. In the reverse direction, the principal
mechanism by which seawater nutrients are regenerated from
organic matter is respiration.

An oxygen minimum zone occurs in areas where respira-
tion exceeds'thé supply of oxygen by advection and diffusion
(Wyrtki, 1962). An extensive oxygen minimum zone (<1 ml1/1)
exists in the eastern tropical Pacific, where oxygen con-
centrations have been reported below the 1imits of detection
by special colorimetric techniques (<0.01 m1/1) {Broenkow
and Cline, 1969; Cline and Richards, 1972).

Wyrtki (1967) discusses the factors responsible for the

extensive oxygen minimum zone observed in the eastern tropi-




cal "Pacific Ocean. He concludes, "It would be extremely
interesting to set uh a mathematical model and to calculate
numerical values for the parameters invelved." Accordingly,
this thesis uses a numerical model to determjne values of
advection, diffusion, and consumption which are compatible
with the oxygen distribution 1in the eastern trdpical
Pacific. Because the velocities and diffusivities are
assumed, this 1is a kinematic model. No effort is made to
determine the sources of energy responsible for the assumed

dynamics, which is a criticism discussed by Munk (1966).

Model Application

The extensive oxygen minimum zone observed 1in the
geastern tropical Pacific is the feature for which distribu-
tions of advection, diffusion, and consumption will be esti-
mated using the numerical model. The oxygen minimum zone
spans two water masses in its vertical distribution: The
Subtropical Subsurface Water above and the Intermediate
Water below. The almost Tinear temperature-salinity rela-
tionship in this depth range indicates that the oxygen mini-
mum layer 1is comprised of mixed water from these two water
masses (Wyrtki, 1967).

The origin of the water mass mixed into the oxygen
minimum Tayer from above is explained by Wyrtki {(1967). The
Subtropical Subsurface Water is formed south of 10°S, from-
which it is -drawn northward .into the Equatorial Under-

current, The water 1i1s mixed as it is carried eastward in




6
the meridional flow of the Undercurrent. The Undercurrent
discharges its water at the Galapagos Islands, from which
same of the water flows north, and some south. The
northward-turning branch of the discharge of the Eguatorial
Undercurrent flows in a cyclonic path from the Galapagos
Islands. West of about 15°N, 120°W the water in the oxygen
minimum Tlayer mixes with waters from both the California
Current and the Countercurrent, which together form the
North Equatorial Current. The oxygen minimum Tayer thus
increases in oxygen concentration and decreases in vertical
extent west of this point. The assumed path of the flow
(Fig. 1) approximates that given by Wyrtki (1967). The flow
path also agrees qualitatively with maps of acceleration
potential given for this water mass (Love, 1972§ Reid,
1965). Present knowledge of the large §ca1e circulation
beneath the wind-driven surface layer in the eastern tropi-

cal Pacific is 1limited to such studies as the aforemen-

tioned, all of which infer flow indirectly from salinity and

temperature distributions.

The salinity maximum at the bottom of the thermocline
is formed by the discharge of water from the Undercurrent at
the Galapagos Islands (southern boundary, Figs. 2b, 3b).
The salinity in the core of the salinity maximum is about
35. The temperature is about 14°C. The salinity maximum is
located at a depth of 100 m. At the northwest end of the

flow the salinity and temperature in the core of the sali-
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nity maximum layer have decreased to 34.7 and 12°C, respec-
tively, and the depth of the tayer has increased to 200 m
{northern boundary, Figs. 2b, 3b).

The water mass that is mixed into the oxygen minimum
lTayer from below is the Intermediate Water. According to
Wyrtki (1967), the salinity minimum associated with this
water mass north of 15°S, *. . . 1is not Tfdentical or
directly derived from the minimum south of 15°S [the
Antarctic Intermediate Water]." Wyrtki states that, because
this northern component of the Intermediate Water has lower
temperatures and higher densities than does the Intermediate
Water south of 15°S, it is an indication that, ". . . the
downward diffusion of heat and salt have caused the minimum
to appear deeper." Wyrtki also suggests that the long time
scale associated with vertical diffusion 15 consistent with
a2 long residence time of this water mass, which agrees with
its low oxygen concentration.

The oxygen concentration associated with the water
masses above and below the oxygen minimum drops as the flow
moves northward (Fig. 4b}. The oxygen concentration in both
the Subtropical Sabsurface and Intermediate Waters decreases
from about 1.5 m1/1 at the Galapagos Islands to 0.35 m/1 at
the northwestern boundary of the flow.

Two goals motivate the following numerical model of the
oxygen distribution in the eastern tropical Pacific Ocean.

The first goal is to find tﬁe controlling factors of the
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12

differential equation (Eq. 2); i.e., the "primary balance."
The second goal 1is to formulate and quantify consumption
within the oxygen minimum zonme. It must be emphasized that
the goal 1is not to explain the processes responsible for
creating the oxygen minjmum zone: The purpose is to eluci-

date those local processes which intensify it.



METHODS

The development of the numerical model requires some
additional simplifying assumptions before presentation of

the actual form of the differential equation modeled.

Additional Assumptions

The two additional assumptions wused to simplify
Eg. 1 to a more numerically manageable form are Jlateral

homogeneity and horizontal isotropy.

Lateral homogeneity. The x-axis 1is positioned along the

primary axis of flow, whereupon the y-components of both the
lateral velocity (v) and the solute gradient (3S/dy) are

considered negligible.

Horizontal isotropy. The horizontal coefficient of kinema-

tic eddy diffusivity (Ky) is assumed horizontally isotropic,

and thus denoted Ky.

The Model

With the above additional assumptions Eg. 1 becomes:

30 , 30, 20 _ 3 , 30, 3 , 40
3t T e T War T oax Kndx t a3z K 57 R (2)
where 0 is the oxygen concentration. The '"forcing

functions" of the model are the velocities (u and w),

diffusivities (Kp and K;), and consumption (R), all of which

13




14
can be functions of x and z. Additionaily, R can be a func-

tion of concentration.

Initial and Boundary Conditions

Equation 2 requires one initial and four boundary con-
ditions. The initial condition specifies the horizontal and
vertical distribution of the solute at the initial time
t = 0. Observed distributions of solute at the top, bottom,
southern (left-hand), and northern (right-hand) boundaries
must also be given: these boundary conditions are assumed
constant with time. Thus, efficient implementation of all
conditions at once requires specification of an initial con-
dition which includes the constant boundary conditions which

will be maintained with time.

Numerical Soiution by Finite Differences

Equation 2 is a parabolic-type of partial differential
equation. The numerical approximation of this type of
equation has received extensive treatment in the Titerature,
Many different ways have been used to formulate the finite
difference equations which numerically approximate such
parabolic-type . equations. One technique that has won
favorable attention for two-dimensional models is the alter-
nating direction implicit (ADI) method, first developed in
companion papers by Peaceman and Rachford (1955) and Douglas
(1955). A large scale computational model using the ADI

method is given by Leenderste (1970), upon which the present




procedure is based.

The difference equations for the ADI method of approxi-

mating Eq. 2 are:
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is Uused to described discrete values of the variables on a
grid. A space-staggered scheme is used (Platzman, 1959} in
which diffusivities and oxygen concentrations are described
at different grid points. The space-staggered scheme has
the advantage that, for each point at which the oxygen con-
centration is advanced in time, the diffusivity terms are
centered in space. Oxygen concentrations, velocities, and
productivities are all located at the same integer space
indices (i,j). Diffusivities, however, are situated midway
between the concentration gfid points in space, and are thus.
described at integer and one-half indices (i+1/2, j+i/2).
The ADI method has two main advantages. The method is
unconditionally stable and computationally more efficient
than most other stable schemes (e.g., seven times more effi-
cient than the Crank-Nicholson method). The basic idea
behind the ADI method is to combine the computational ease
of explicit schemes (in which values at new times are calcu-
lated from values at previous times) with the stability of
implicit schemes (in which values at new times depend on the
spatial gradient of values at the new time). Each time step
(At) is accordingly divided up into Egs. 3 and 4. Equation
3 is implicit in the horizontal and explicit in the vertical
direction, and vice-versa for Eq. 4. When the two suc-

cessive operations are considered over one time interval:
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T - o Y -

i TZ%T7 [Kh1+1/2,j (Oiiiii - G$f§/2)

g s Y - T

+ g {giii (Gﬁ,j+1 - Oﬁ,j—l)
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(ai)Z [Ko s 5172 (05t§+1 - 0§T§)

IRV (0575 - 0Et§-1)]}= "4.4, (5)

the terms containing spatial derivatives are either centered
in time (for the horizontal direction), or averaged in time
over the time interval (for the vertical direction). The
time-centering or time-averaging of the spatial derivatives
is precisely what gives the ADI method 1its attractive

numerical properties.

Numerical properties., Three numerical properties must be

obeyed for the finite difference system (Egs. 3, 4) to
accurately approximate the differential equation (Eq. 2).
These properties are (1) consistency, {(2) stability, and (3)
convergence.

Consistency. A finite difference system is consistent
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with a differential equation if, in the limit as the grid
spacings tend toward zero, the finite difference system
becomes the same as the differential equation at each point
in the solution domain (Noye, 1982). By Taylor's series
expansions about the point (i, j, k+1/2), Appendix A shows
that the finite difference system (£gs. 3, 4) is consistent
with the differential equation (Eq. 2), and approximates it
to second-order accuracy in space and time.

Stability. The finite difference system is stable if
numerical errors introduced by the computation do not
amplify in an unlimited manner. The unconditional stability
of the ADI method for homogeneous equations (i.e., R = 0 in
Eq. 2) was one of the reasons for which it was developed
(Peaceman and Rachford, 1955). The investigation of the
stability of the non-homogeneous Eq. 2 is more compiicated.
Marchuk (1982) presents a finite difference system called
the "stability method," which he shows is unconditionally
stable for both the homogeneous and non-homogeneous cases.
The equivalence of the finite difference system and
Marchuk's stability method is shown 1in Eqs. 6 through 10.

To show that Eqs. 3 and 4 are the same as Marchuk's

stability method, they are first writen as:

2 L k+1/2 k k+ k

e GRS (e
and

2o (oRFL L gRRL2) o keI L gkel g ()
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where the spatial indices of the oxygen concentrations have
been suppressed for notational simplicity. The operators

Ly and Lo have the following definitions:

Ao
U8 AL,
Us L DA
1.0 = =L (0 Co- 0 4 ) ,? e
1 Zhx% i+1,] i-1,] oAl ac.
1 r AT
- K . - 0,
(AX)ZB“: h1+l/2 3 'l"i'l,J 1,‘]) :
0 - 0 3 8
hi-1/2,j ( i,d 1—1,3f3 : (8)
0 N
and O h
o Wi,
Lo = o33 (04 541 - 05 5.1)
1
K 0. ... - 0. .
(az)2 L Zi j+1/2 ( i,j+1 1,3)
- K 0. . - 0. . . 9
Zi,3-1/2 ( i,d 1,3-1)] _ (9)

Eliminating unknowns (the 0XK+1/2) from Egs. 6 and 7 gives:

k+1_ pk
(1 + 45 L) g“"KE”Q” - Lo* = R, (10)

where L is the matrix sum L = Ly + Lp, and I is the identity
matrix. Equation 10 {is the stability method of Marchuk
(1982). Appendix B establishes conditions which ensure that
Marchuk's assumptions are true, thus demonstrating that the
finite difference system {(Eqs. 3, 4) 1is unconditionally
stable.

Convergence. A solution to a finite difference system
is convergent to that of the differential equation if, in
the 1imit as ﬁhe grid spacings tend toward zero, the finite

difference solution approaches the solution of the differen-
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tial -equation at each point in the solutiaon domain (Noye,
1982). In general, it 1is very difficult to show con-
vergence; however, connections exist between consistency,
stability, and convergence. One such connection is Lax's
Equivalence Theorem (lLax and Richtmyer, 1956): "Given. a
properly posed linear initial value problem and a finite
difference approximation to it that satisfies the con-
sistency condition, stability 1is the necessary and suf-
ficient condition for convergence." The condition that the
initial value problem be p;oper]y posed imp]ies that the
solution of Eg. 2 must depend continuously on the initial
condition (i.e;, discontinuities are not allowed in the ini-
tial condition). The condition that the problem must be
linear ensures that errors propagate according to the homo-
geneous form of the differential equation (i.e., propagation
of errors 1s not affected by the non-homogeneous term).
Because the system of linear finite differences (Egs. 3, 4)
is consistent with Eg. 2 (Appendix A) and stable (Marchuk,
1982), it follows from Lax's Equivalence Theorem that it is

also convergent for properly posed initial value prohlems.

Method of solution. The model solves Egs. 3 and 4 by an

efficient method first developed by Thomas (1949), which is
often called "The Thomas Algorithm,* (e.g., Noye, 1982).

The procedure is outlined below for Eq. 3.
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" Omitting vertical direction indices and rearranging
Eq. 3 gives:
k+1/2 k+1/2 k+1/2 _ ok
A 05t B0y - 0305177 = Dy (11)
where the coefficients on the left-hand side are:
i L Ui,j
A'I T OAX (AX Kh1+l/2,J - 2 )! (12)
-1 1 Ui,J
Cy = AX (Ax Kh1~1/2,j T2 ) (13)
and : _
_ 2
By = Ay ¢ Cp o+ Fp. (14)
The right-hand side represents known quantities:
ko k 4 k k
% = Figg Qe - Gy - 0w Qg M O
F Ry (15)
where
=1 _ ML
Fi,j Y- (AZ K21,j+1/2 ) (16)
-1 L AL
Hi,j T oAz (AZ KZi,j—l/Z 7 )y (17)
and
- 2
Gi,j = Fi,j + Hi,j e (18)

Equation 11 can be

written in matrix form as:



-1 0 0 0 . . . 0, r0g _k+1/2 0y K
-Cq B -Aq 0 . . . 0 04 D3
0 -C2 Bo -Ap . . . 0 09 D2
' x|« | = :

: -Cp-1 Bro1-Ap-a) |Op-q DL-1
-0 0 0 . . 0 0 1= Lo - 0L

(19)

where L represents the number of intervals in the horizontal
direction (Ax's). Equation 19 illustrates that Eg. 11 is an
L x L system of equations yhich must be solved at each half-
time interval (t + At/2). The use of the Thomas Algorithm
for the solution of Eq. 11 is developed below in a recursive

manner.

The Thomas Algorithm. Consider the difference equation

indicated at i = 0 in Eq. 19:

k+1/2 k |
0¥ /2 - of. (20)
Equation 20 represents the Teft-side boundary condition

(note that it is steady-state). With the definition of
k

recursion parameters Mg = 0 and Ng = 0 Eq. 20 becomes:
k+1/2 _ k+1/2
9 = My0; + Ny (21)

The difference equation at i = 1 in Eqg. 19 is:

K+1/? k+1/2 k+1/2 _ -k
-c, o + B 0k - a0k = ok, (22)
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Substitution of Eq. 21 into Eq. 22 and rearranging yields:
k+1/2 _ k+1/2
01 = M0, Ny, {23)

where the recursion parameters are defined as:

YRS

1 By - C1Mp (24)

and ’
k
N, = D1+ CilNp,

1 Br - CiMp (25)
Similarly, the difference equation at i = 2 4in Eq. 19
becomes:

k+1/2 _ k+1/2

07 = My03 Ny (26)
with recursion parameters
M, = 2,
2 = Bz - €My (27)
and
k
W = D2 + ColNp,
2 Bp - CoMy (28)

The recursion becomes obvious. The recursion parameters

Aj
M. =
T By - CiMin (29)
and
k N
N, o= D1+ CiNi-1
T Bi - CiMiy (30)
are calculated for 4§ = 1, 2,. vea, L-1, The calculated

recursion parameters are then used in the recursion formula:



24

k+el/f2 _ oy ok+l/2

0; 0441 i, (31)
for i = L-1, L-2, ... 1. At each half-time interval the
above operations are executed for all interior vertical grid
points i =1, 2, ..., MQ1, where M is the number of vertical
intervals (az's). When the above operations have been made;
the solution of Eq. 3 at a particular half-time interval is
complete.

Certain statements about the use of the above algorithm
are necessary. The left-side boundary conditions (Eq. 20)
must first be prescribed. The left-side values of the
recursion parameters (Mp and Ng) are then calculated as
defined for Eq. 21. After the interior recursion parameters
have been calculated (Egs. 29, 30}, the right-side boundary

condition

k+1/2 _ Ak
0L, = 0L,y (32)
defines Eq. 31 at i = L-1. When the sequence of operations

given by Eg. 31 1is complete, the okygen concentrations
calculated for the half-time interval are used to calculate
concentrations at the integer time-interval (t + at).
Oxygen concentrations at the 1integer time-interval are
calculated by the solution for Eq. 4 in a manner exactly

analagous to that shown for Eg. 3.

Computer Implementation

The computer program which implements the solution of
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Eqs. 3 and 4 dis given 1in Appendix C, along with program
documentation. The program is written in HPL for the HP
3000 Series 200 computers. The program is a subprogram of
the "PLOT" program developed jointly by Moss Landing Marine
Laboratories and Scripps Visibility Lab. The program allows
input of model parameters, uses the model parameters to
solve Egs. 3 and 4 (the ADI method) with the Thomas
Algorithm, and stores the resu]ting_so]ution.

Because the boundary conditions and model parameters
are at steady-state, choice of a large maximum time allows
for the possibility of a steady-state solution (20/9t = 0).
The computer program checks for the possibility of steady-
state using the following finite difference representation

of steady-state:

k+1

i,  “i.3 .
‘]At J""Es (33)

0

where E is the '"error criterion" (note that Appendix A
[Eq. A.18] shows that Eg. 33 is of second-order accuracy in
time). As the error criterion tends to zero, the finite
difference representation of the time-rate change of oxygen
also tends tdward zero. Thus, by choosing E arbitrarily
small, Eq. 33 tends toward the definition of steady-state.
The va1ué of E is arbitrarily set in the computer program as
10-4, The test for steady-state is executed at the end of

the calculation of new oxygen concentrations for the integer
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time interval. The calculations are stopped if the new con-

centrations pass the test

k+1 k -

Oi,j - Oi,j < Eat . (34)
for &ll interior grid points 1 = 1, 2, . . ., L -1; 3 =1,
2, . ., Moo 1, ir
Continqity. Seawater; can be assumed an incompressib]e

fluid. . Thus, volume must be conserved, and the equation of

continuity:

LM

u o, av o, a3 _ gl - (35)

w

X Y 3z

must be obeyed. In this study, the y-component |of the
lateral velocity has béen assumed negligible. Horjzontal

integration of Eq. 35 yields

Sxaw

Uy = Uu - — dx, 36
0 082 ( g
where ub = u (x = 0) and u = u(x = iax). Proper use|lof the

computer program requires adherence to Eq. 36. Two ways are
provided: (1) input all velocities in a manner preconceived

to satisfy Egq. 36, or (2) input the distribution of vertical

velocities at all horizontal grid points plus the distribu-
tion of horizontal velocity at the left-side boundary (x =
0). .If the second method 1is chosen, the program will
approximate the vertical derivative of the vertiéaT veloci-

ties by
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Taw o Wi, j+l - Wi -1 w! o,
g?’“’ ! 7ar o 7 i, (37)

for interior grid points, or

3 Wi,1 - Wi D w!

z 2A2 = i,0, , (38)

=

R

|

o

and

W - Wi - ' ‘
et s Y, (39)

for the upper and lower boundaries, respectively. The ver-
tical derivatives are second-order accurate in space in the
interior, and first~order aﬁcurate at the upper and lower
boundaries. Trapezoidal integration of the computed ver-
tical velocity derivatives is then used to approximate the
integral in Eg. 36:

X aw . . AX I w! . oWl |

goffz_dx""'z Z i=1 ( 1"'1,3 + 75.]): (40)
where I is the horizontal grid peint at x. The final step

in computing the horizontal velocities adds the horizontal

velocity given at x = 0 to the computed integral:

AX Wi . Wi o
UI,,]""“—--’UO,J'+§_Z( i-1,3 + 7i,7). (41)

Because of the coarse nature of fhe integratian, the
computed horizontal velocities will be a better approxima-
tion for horizontal grid points further away from the
left-side boundary. For the above-mentioned reason, hori-

zontal velocities used in the final calculations were analy-
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tically computed from Eq. 36, using preconceived notions of
the vertical velocity distribution and the horizontal velo-
city distribution at x = 0. Horizontal velocities calcu-
lated wusing the trapezoidal integration method were used
only in trial runs of the model, when only rough solutions

were sought.

Time integration. When all of the space and time intervals

and extents have been specified and the distribution of all
parameters selected, the time integration (i.e. the solu-
tion of Eqs. 3 and 4) may proceed.

Program execution times can be Tong (up to 40 minutes)
when one or more of the following conditions is true: the
time interval is too small, the spatial interval 1is too
small, or one parameter is 0verwhe1m1nglyr1arger than al}
others.

When fthe time integration has finished by either
regching steady-state or the specified maximum time, the
model may ei}her be re-run without Tosing the data, or the
results saved., If the results are saved, the model can once
again be run, or scaled parameters and results printed on an

impact printer. The scaled parameters are:

x' = LAX, ' (42)
z' = Maz, (43)
u = __._”f;”s | (44)




W
R (45)
Kl = Khmax,
h ~ 1y 2
(x") (46)
Ky
Kt = max,
; £ (212 (47)
an
R" = Rpax- (48)

Note that the scaled parameters 1in Eqs. 44 through 48 all
have units of inverﬁe time. Program run-times are con-
siderably shortened if the longest indicated time interval
is used for the trial run and results used as the initial
condition for the next run. Repeated application of this
process allows systematic refinement of the time interval
and subsequent convergence of the model solution to the

solution of Eq. 2.

Selection of Boundary and Initial Conditions

Data for model boundary conditions were obtained from
the vertical sections of the eastern tropical Pacific given

£ 18

by Love (1972).

Boundary positions. Visual inspection of the vertical sec-

tions of temperature and salinity near the Galapagos Islands
prompted the positioning of the southern (left-side) boun-
dary at 2.5°N, 92°W. At this point the subsurface discharge

of waters with the proper temperature-salinity charac-



30

teristics of Equatorial Undercurrent Water was observed.
The position of the northern (right-side) boundary of the
model was chosen at 115°N, 119°W to cor%espond with the
northwestern boundary of the oxygen minimum zeone discussed
by Wyrtki (1967). The assumed horizontal extent of the
model was 3800 km (Fig. 1). The upper boundary of the model
was set at a depth of 150 m, corresponding to the average
depth of the core of the salinity maximum and the bottom of
the thermocTiﬁe. The average depth of the 80 c¢l/ton surface
along the assumed path of flow was 800 m. Because 80 cl/ton
is the surface along which the Intermediate Water flows

(Reid, 1965), 800 m was chosen as the model bottom boundary.

Grid dintervals, Spatial intervals of 25 m in the vertical

and 100 km in the horizontal were used. Considering the
spatial variation of oxygen concentration as a wave, the
spatial discretization adopted implies that no waves can be
resolved which have wavelengths smaller than 50 m and/or 200

km in the vertical and horizontal directions, respectively.

Boundary conditions. Salinity., temperature, and oxygen

distributions for model boundary conditions were inter-
polated from Love (1972), then smoothed by visual inspection
(Figs. 2-4). Values were chosen to agree With the data
summarized by Wyrtki (1967). The following formulas were

used to scale the data;




S'' = § - 34 (49)

T = (T - 5)/9 (50)
and

' = 0/1.5 '(51)

Here S, T and 0 represent salinity, temperature (C), and
oxygen {(ml1/1), respectively; primed quantities represent the
corresponding scaled values,

It must be emphasized that the oxygen boundary con-
ditions themselves impose an oxygen minimum zone. Thus, the
consumption necessary to fit the model to observed data

represent local processes which intensify the minimum.

Initial conditions. Initial conditions at interior grid

points were generated by linear interpolation between top

and bottom boundary values.



RESULTS

Model results will be presented below under two cate-
gories: (1) results from a choice of parameters which exhi-
bit the closest visual agreement with the observed data, or
"hest fits," and (2) results from perturbing parameters from
their best fit values; i.e., sensitivity. Some conventions
will make the presentation of the results simpler. Model
boundaries will be referred to in this section as the TB
(top boundary, z = 150 m), BB (bottom boundary, z = 800 m),
LHB (southern or left-hand boundary, x = 0 km), and RHB
{(northern or right-hand boundary, x = 3800 km). The word
"distance" will be used as horizontal distance from the LHB,

unless otherwise specified.

Best Fits

The vertical sections of observed data (Figs. 5-7)
were prepared from those given by Love {(1972), using only
stations which fell along the assumed flow path (Fig. 1).
The "best fit" model results exhibit the best visual
agreement with the observed data for simple choices of model
parameters (Figs. 8 - 10). Thus, the best fit model results
are for a choice of parameters which are mostly constants.
The values of the physical parameters which give the best
fit results are: w = -3 m/yr {(-10"% cm/sec), K, = 3000
me/yr (1 cm?/sec), and Kn = 6 x 1011 m2/yr (2 x 108

32
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