Search results
(1 - 3 of 3)
- Title
- Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea,
- Description
- Early ecological research in McMurdo Sound revealed local spatial gradients in community structure associated with variations in anchor ice disturbance, fast ice and snow cover, and the effects of predators. Research contrasting the east and west sides of McMurdo Sound has shown major differences in benthic communities, which have been attributed to oceanographic influences on the advection of water-column productivity and the frequency of fast ice break-out. Despite these regional and local differences, coastal benthic communities in McMurdo Sound show a high level of stability, and contain a variety of large and potentially very long-lived species. In Terra Nova Bay, about half way along the Victoria Land Coast of the western Ross Sea, the coastal benthic communities provide some insightful contrasts with those in McMurdo Sound. For example, the abundance and depth distribution of dominant species such as Sterechinus neumayeri and Adamussium colbecki are markedly different from McMurdo Sound. In both locations communities dominated by large sponges are most prolific in regions that are free from iceberg disturbance of the seabed. A recent assessment of northern Victoria Land coastal benthic communities, in conjunction with multibeam imagery of the seafloor, further highlights the importance of iceberg disturbance in structuring Antarctic benthic communities. A comparative synthesis of these coastal ecological studies enables us to generate hypotheses concerning the relative importance of different environmental drivers in structuring benthic communities. Overlain on the regular latitudinal shifts in physical factors such as light regime, are regional fluctuations that are controlled by atmospheric and oceanographic circulation patterns and coastal topography/bathymetry. Change in diversity along the western coast of the Ross Sea is predicted to be influenced by three main factors (1) ice disturbance (e.g., via anchor ice and advection of supercooled water or icebergs), (2) photosynthetically available radiation (affected by ice and snow cover and water clarity), (3) the locations of polynyas and advection of planktonic production and larvae. Interactions between these factors are expected to result in non-linear changes along the latitudinal gradient. While predictions generated from these hypotheses remain to be rigorously tested, they provide indications of how benthic communities may respond to changes in production, disturbance and the stability of coastal sea ice. © 2006 Elsevier Ltd. All rights reserved., Cited By (since 1996):28, Invertebrates, CODEN: DSROE, ,
- Author
- Thrush, Dayton, Cattaneo-Vietti, Chiantore, Cummings, Andrew, Hawes, Kim, Kvitek, Schwarz
- Date
- 2006-01-01T00:00:00Z
- Title
- Unusual coastal flood impacts in Salmon Valley, McMurdo Sound, Antarctica
- Description
- Large floods bringing significant sediments into the coastal oceans have not been observed in Antarctica. We report evidence of a large flood event depositing over 50 cm of sediment onto the nearshore benthic habitat at Salmon Bay, Antarctica, between 1990 and 2010. Besides direct observations of the sedimentation, the evidence involves a debris flow covering old tyre tracks from the early 1960s, as well as evidence of a considerable amount of sediment transported onto the Salmon Creek delta. We believe that the flood was sourced from the Salmon Glacier and possibly the smaller Blackwelder Glacier. Such floods will be more common in the future and it is important to better understand their ecological impacts with good monitoring programmes. © Antarctic Science Ltd 2016, Export Date: 13 May 2016, Article in Press
- Author
- Dayton, Hammerstrom, Jarrell, Kim, Nordhausen, Osborne, Thrush
- Date
- 2016-01-01T00:00:00Z
- Title
- Surprising episodic recruitment and growth of Antarctic sponges: Implications for ecological resilience
- Description
- Sponges are the most conspicuous component of the Antarctic benthic ecosystem, a system under stress both from climate change and fishing activities. Observations over four decades are compiled and reveal extremely episodic sponge recruitment and growth. Recruitment occurred under different oceanographic conditions on both sides of McMurdo Sound. Most of the sponges appear to have recruited in the late 1990s–2000. Observations from 2000 to 2010 follow thirty years of relative stasis with very little sponge recruitment or growth followed by a general pattern of recruitment by some forty species of sponges. That there was almost no recruitment observed on natural substrata emphasizes the contrast between potential and realized recruitment. This unique data set was derived from a region noted for physical stasis, but the episodic ecological phenomena highlight the importance of rare events. Against a background of intermittent food resources and the low metabolic costs of stasis, understanding the causes of irregular larval supply, dispersal processes, recruitment success and survivorship becomes critical to predicting ecosystem dynamics and resilience in response to increasing environmental change. Our time-series emphasizes that long-term data collection is essential for meaningful forecasts about environmental change in the unique benthic ecosystems of the Antarctic shelf.
- Author
- Dayton, Jarrell, Kim, Thrush, Hammerstrom, Slattery, Parnell